Ring magnets for magnetic beads trapping in a capillary†
نویسندگان
چکیده
This paper introduces the concept of ring magnets for magnetic beads (MBs) trapping in a capillary. Such magnets enable an easy insertion of a capillary simply like a pearl on a string. With this system, high magnetic forces are obtained thanks to the proximity between the magnet and the capillary, giving the opportunity to work at higher flow rates than with classical setups using two magnets with their magnetization perpendicular to the capillary. Moreover, by alternating magnets and non-magnetic spacers either in attraction or repulsion configuration, it is possible to form a chain and as a consequence to adapt the number of magnets to the desired number of plugs, thus controlling the surface available for molecule binding. Magnetic force mapping was first carried out by numerical simulations for a single ring magnet. The usefulness of this concept was then demonstrated with the achievement of an immunoassay and an online preconcentration experiment. To study the formation of multiplugs, the magnetic force was first simulated for a chain of four magnets in repulsion. This force was then introduced into a convection-diffusion model to understand the influence of the flow velocity on their size and position. The numerical simulations were qualitatively corroborated by microscopic visualizations, carried out in a capillary placed between rectangular magnets having a magnetization parallel to the capillary, and quantitatively by bead capture efficiency experiments.
منابع مشابه
Simultaneous sample washing and concentration using a "trapping-and-releasing" mechanism of magnetic beads on a microfluidic chip.
Simultaneous washing and concentration of functionalized magnetic beads in a complex sample solution were demonstrated by applying a rotational magnetic actuation system to a microfluidic chip under continuous flow conditions. The rotation of periodically arranged small permanent magnets close to the fluidic channel carrying a magnetic bead suspension allows trapping and releasing of the beads ...
متن کاملBubble cell for magnetic bead trapping in capillary electrophoresis.
A bubble cell capillary classically used to extend the optical path length for UV-vis detection is employed here to trap magnetic beads. With this system, a large amount of beads can be captured without inducing a strong pressure drop, as it is the case with magnetic beads trapped in a standard capillary, thereby having less effect on the experimental conditions. Using numerical simulations and...
متن کاملMagnetic core shell nanoparticles trapping in a microdevice generating high magnetic gradient.
Magnetic core shell nanoparticles (MCSNPs) 30 nm diameter with a magnetic weight of 10% are usually much too small to be trapped in microfluidic systems using classical external magnets. Here, a simple microchip for efficient MCSNPs trapping and release is presented. It comprises a bed of micrometric iron beads (6-8 μm diameter) packed in a microchannel against a physical restriction and presen...
متن کاملMagnetic forces produced by rectangular permanent magnets in static microsystems.
Finite element numerical simulations were carried out in 2D geometries to map the magnetic field and force distribution produced by rectangular permanent magnets as a function of their size and position with respect to a microchannel. A single magnet, two magnets placed in attraction and in repulsion have been considered. The goal of this work is to show where magnetic beads are preferentially ...
متن کاملA new ring-shape high-temperature superconducting trapped-field magnet
This paper presents a new trapped-field magnet made of second-generation high-temperature superconducting (2G HTS) rings. This so-called ring-shape 2G HTS magnet has the potential to provide much stronger magnetic fields relative to existing permanent magnets. Compared to existing 2G HTS trappedfield magnets, e.g. 2G HTS bulks and stacks, this new ring-shape 2G HTS magnet is more flexible in si...
متن کامل